Genéricos

CON

Josep M. Grinyó
Department of Nephrology
Hospital Universitari de Bellvitge
University of Barcelona
European Society for Organ Transplantation

Advisory Committee Recommendations on Generic Substitution of Immunosuppressive Drugs

Dr. Teun van Gelder
(on behalf of the ESOT Advisory Committee on Generic Substitution)

(July 7 2011)
Inequality in World Healthcare Spending

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Per Capita Spending (International Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>$52</td>
</tr>
<tr>
<td>40</td>
<td>$171</td>
</tr>
<tr>
<td>60</td>
<td>$369</td>
</tr>
<tr>
<td>80</td>
<td>$849</td>
</tr>
<tr>
<td>95</td>
<td>$2,337</td>
</tr>
</tbody>
</table>
The Cost of a Long Life

Average Life Expectancy

Per Capita Spending

Life Expectancy

Per Capita Spending (International Dollars)
Life Expectancy vs. Spending

Per Capita Health Care Spending in International Dollars

Life Expectancy

Country Points:
- Cuba
- Singapore
- Japan
- Switzerland
- United States
- Iraq
- South Africa
- Namibia
- Botswana
- Sierra Leone
7.4.1 Expenditure on pharmaceuticals per capita and as a share of GDP, 2009 (or nearest year)
Figure 3: Average Annual Growth in per Capita Drug Spending, Selected Countries, 1997 to 2007

Source
Figure 1: Percentage Share of Total Health Spending, by Selected Category, Canada, 1990 to 2010

Note
f: forecast.

Source
National Health Expenditure Database, 2011, Canadian Institute for Health Information.
Figure 5: Per Capita Retail Drug Expenditure by Age Group, Canada, 2007

Source
Figure 8: Five-Year Averages of New Chemicals and New Drug Classes Approved for Sale in Canada, 1949 to 2010

Sources
National Prescription Drug Utilization Information System Database, Canadian Institute for Health Information; Drug Product Database, Health Canada.
Figure 6: Percentage Share of Wholesale Drug Purchases (Drug Stores and Hospitals), Brand Name and Generic, 2004–2005 and 2009–2010

Source
Canadian Drug Store and Hospital Purchases Audit, 2010, IMS Brogan.
Generics have seen superior growth performance for a number of years.

2008-2012: Global Generic Volume Sales

- Growth is driven by government that under high debt and fiscal deficits are pushing for even greater generics.
- In Pharmerging countries growth is underpinned by generic growth.
- Fewer, smaller small molecules going forward.

Source: IMS Health, MIDAS, MAT Sept 2012, Rx only. Market Segmentation + LIC countries.
Historically generic penetration moves slowly even in large markets: recently Spain has accelerated

2003-2012: Generic volume penetration dynamics in the top 8 markets

Source: IMS MIDAS Sep 2012 Ethical Total Market based on SU.
PRESS RELEASES

Spain is the country in the OECD with the fastest generic penetration
Publication of the 110th issue of Farmaindustria’s Monthly Economic Bulletin
(11-09-2014)
Factors that have been shown to drive generic utilisation and factors that inhibit generic utilisation

Drivers
- Mandatory INN prescribing
- Generic first dispensing and prescribing
- Large price differential between generic and originator
- Reimbursement levels
- Patient Co-payments
- Incentives for dispensing/prescribing generics

Constraints
- Cultural resistance from doctors
- Lack of incentives for pharmacists to dispense
- Lack of margin for wholesalers to distribute
- Preference for brands in certain markets
- Across the board price cuts
Funds on generics

Cumulative performance index: 77%
The Role of Generics in Kidney Transplant: Mycophenolate Mofetil 500 Versus Mycophenolate: 2-Year Results
Taieb Ben Abdallah,1 Mondher Ounissi,2 Mejda Cherif,1 Imed Helal,2 Cyrine Karoui,1 Sonia Mhibik,1 Med Mongi Bacha,1 Ezzeddine Abderrahim,2 Adel Kheder2

Immunosuppressive regimens containing generic mycophenolate mofetil (Myfenax) in de novo renal transplant recipients – preliminary results of 6-month observation
Boleslaw Rutkowski, Beata Bzoma, Alicja Dębska-Ślizień, Andrzej Chamienia
Ann Transplant 2011; 16(4): 74-80

Immunosuppression With Generic Tacrolimus and Mycophenolate Mofetil in Renal Transplant Recipients: Preliminary Report in Chile
DOI: http://dx.doi.org/10.1016/j.transproceed.2008.02.056
Can Generics Be Trusted?

Among themselves, physicians have shared safety concerns after patients switched to generic versions of the mainstay immunosuppressants PredN (tacrolimus) and/ or CellCept (mycophenolate mofetil). But so far, such concerns are based on anecdotes—not published studies. “The pattern we’ve seen is that some previously stable patients who’ve been switched to a generic have had late rejection, and that raises our antena,” says John Friedwater, MD, a nephrologist at Northwestern Memorial Hospital in Chicago.

At the Cleveland Clinic, John Fang, MD, PhD, chairman of the Department of General Surgery, notes that one of his stable patients converted to a generic because his insurance company required him to, and he ended up having about a 30% reduction in tacrolimus trough level. After the transplant team biopsied the organ and talked with the insurance company, the third-party payer rescinded the decision and agreed to cover PredN.

If these stories sound familiar, don’t consent on them to sway the Food and Drug Administration (FDA) to take a closer look at generics. The FDA approved the first generic version of tacrolimus in August and several generic versions of mycophenolate mofetil this past year. However, the agency will need hard data before it will change its generic approval process.

FDA Need Scientific Evidence

Crystal Rice from the FDA’s Center for Drug Evaluation and Research says the agency would like to see actual data—not anecdotes from random patients—showing that generics are not performing the way they should. “If we see scientific evidence that there is a problem with a generic, we will take action,” she says.

letters from the American Society of Transplantation [AST] and the American Society of Transplant Surgeons [ASTS] asked for further studies. They requested that in “real-life administered immunosuppressants used in the transplant population and characterized by a narrow therapeutic index, such as tacrolimus, bioequivalence studies in healthy subjects be supplemented by studies performed in the transplant population.”

Nearly two years later, in August 2009, the FDA finally responded in a letter to Astellas that said, in part, “We note that ASTS has provided no new scientific or clinical data to support their comments.” Additionally, the FDA told Astellas that they “do not agree that bioequivalence studies in transplant patients should be required for the approval of ANDAs [abbreviated new drug applications] for tacrolimus drug products.” With regard to tacrolimus, there is insufficient scientific evidence to suggest that the use of specific patient population(s) in bioequivalence studies would detect differences in formulation that might have clinical significance and that would not be detected by bioequivalence in healthy subjects.

Bioequivalence Can Vary by 40%

Rice says that test and reference drugs are considered bioequivalent if both provide the same rate and extent of absorption as determined by the bioequivalence measure Cmax, which is the peak plasma drug concentration following a single dose, and the AUC, which is the area under the drug plasma concentration versus sampling time curve following a single dose. “Two drugs are deemed bioequivalent if the 90% confidence intervals of the geometric mean Cmax and AUC test/reference ratios fall within the limits of 80% to 125%,” she adds.

Generic immunosuppression in solid organ transplantation: a Canadian perspective.

Harrison JJ, Schiff JR, Coursol CJ, Daley CJ, Dipchand AI, Heywood NM, Keough-Ryan TM, Keown PA, Levy GA, Lien DC, Wichart JR, Cantarovich M.

Generic cyclosporine: a word of caution.

Ponticelli C1.
Therapeutic index

• Therapeutic index
 - The range between the median effective dose, known as ED50, and the median toxic dose, TD50

• Narrow therapeutic index (NTI)
 - A very small range of doses at which a medication provides benefits without causing severe and potentially fatal complications

• Small molecule immunosuppressants are NTI drugs:
 - Cyclosporine, tacrolimus, MPA agents, mTORi
4.2: Do not use generic compounds that have not been certified by an independent regulatory agency to meet each of the following criteria when compared to the reference compound (Not Graded):
- contains the same active ingredient;
- is identical in strength, dosage form, and route of administration;
- has the same use indications;
- is bioequivalent in appropriate bioavailability studies;
- meets the same batch requirements for identity, strength, purity and quality;
- is manufactured under strict standards.

4.3: It is important that the patient, and the clinician responsible for the patient’s care, be made aware of any change in a prescribed immunosuppressive drug, including a change to a generic drug. (Not Graded)

4.4: After switching to a generic medication that is monitored using blood levels, obtain levels and adjust the dose as often as necessary until a stable therapeutic target is achieved. (Not Graded)
……, in order to ensure the safety and efficacy of generic tacrolimus products it is necessary to apply tighter bioequivalence acceptance criteria than the conventional 80-125%.

Conclusion: The EWP recommends that the bioequivalence acceptance criteria for tacrolimus should be [90-111%] for AUC and [80-125%] for Cmax CI_{90} (Westlake interval. Biopharmaceutical statistics for drug development. NY: Marcel Dekker, 1988: 329-52)
Main limitations of bioequivalence studies (authorization applications)

- Healthy volunteers (mainly young male adults)
- Single dose crossover studies of innovator drug and generic
- Not in steady state conditions.
- Bioequivalence studies not required among distinct generics formulations:
 - Same active drug
 - Distinct galenic formulations
 - Different bioavailability
- Differences between HV and patients (concomitant medications, polypharmacy, ..)
- Distinct PK parameters for bioequivalence studies and clinical TDM (AUC and C_{max} vs C_0)
The transplant community is filling the gap…… beyond regulatory requirements.
A Randomized Pharmacokinetic Study of Generic Tacrolimus Versus Reference Tacrolimus in Kidney Transplant Recipients

A Randomized Pharmacokinetic Study of Generic Tacrolimus Versus Reference Tacrolimus in Kidney Transplant Recipients

A Randomized Pharmacokinetic Study of Generic Tacrolimus Versus Reference Tacrolimus in Kidney Transplant Recipients

A randomized, crossover pharmacokinetic study comparing generic tacrolimus vs. the reference formulation in subpopulations of kidney transplant patients

Bloom et al. Clinical Transplantation 2013; 27: E685-E693
Generic tacrolimus in solid organ transplantation
Changes in tacrolimus doses and levels

Bioequivalence between generic tacrolimus products marketed in Spain by adjusted indirect comparison

<table>
<thead>
<tr>
<th></th>
<th>PharOS</th>
<th></th>
<th>Sandoz</th>
<th></th>
<th>Intas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_{max}</td>
<td>AUC</td>
<td>C_{max}</td>
<td>AUC</td>
<td>C_{max}</td>
<td>AUC</td>
</tr>
<tr>
<td>5 mg</td>
<td>105.56–117.93</td>
<td>93.06–104.74</td>
<td>91.69–111.46</td>
<td>99.24–110.89</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1 mg</td>
<td>94.26–111.42</td>
<td>101.12–119.01</td>
<td>–</td>
<td>–</td>
<td>103.0–120.8</td>
<td>91.51–105.9</td>
</tr>
<tr>
<td>0.5 mg</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
However,

- Bioequivalence only required for each generic to the innovator drug and not among them.

- Two generic formulations may not be bioequivalent between them
 - Generic A: CI_{90}: 80-100%
 - Generic B: CI_{90}: 105-125%

And what about 10% of patients that by definition are out of CI_{90}?
Pharmacokinetic parameters on Day 10 (left panel) and at Month 6 (right panel) (de novo KTR).

<table>
<thead>
<tr>
<th></th>
<th>Day 10</th>
<th>Month 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference (n=63)</td>
<td>Generic (n=54)</td>
</tr>
<tr>
<td>(C_0) (ng/mL)</td>
<td>9.7±3.0</td>
<td>9.8±2.5</td>
</tr>
<tr>
<td>(C_{\text{max}}) (ng/mL)</td>
<td>23.4±9.1</td>
<td>35.1±14.5</td>
</tr>
<tr>
<td>(T_{\text{max}}) (h)</td>
<td>1.4±0.8</td>
<td>1.0±0.5</td>
</tr>
<tr>
<td>(\text{AUC}_{0-12}) (ng.h/mL)</td>
<td>147.9±43.8</td>
<td>164.0±44.4</td>
</tr>
<tr>
<td>Dose/weight (mg/Kg)</td>
<td>0.13±0.05</td>
<td>0.14±0.08</td>
</tr>
<tr>
<td>Dose normalized (C_0) (ng/mL/mg/Kg)</td>
<td>85.1±44.3</td>
<td>95.8±62.7</td>
</tr>
<tr>
<td>Dose normalized (C_{\text{max}}) (ng/mL/mg/Kg)</td>
<td>192.5±95.2</td>
<td>309.1±191.9</td>
</tr>
<tr>
<td>Dose normalized (\text{AUC}_{0-12}) (ng.h/mL/mg/Kg)</td>
<td>1262.5±593.5</td>
<td>1513.4±935.4</td>
</tr>
</tbody>
</table>

Correlation between C_{min} and AUC0–12 for reference tacrolimus and generic tacrolimus on Day 10 (left panel) and Month 6 (right panel).

Use of Generic Tacrolimus in Elderly Renal Transplant Recipients
Precaution Is Needed

Ida Robertsen, Anders Åsberg, Aleksander Olsen Ingere, Nils Tore Vethe, Sara Bremer, Stein Bergan, and Karsten Midtvedt

No bioequivalence criteria

AUC ratio: 1.17 (CI$_{90}$ 1.1-1.23)

Cmax ratio: 1.49 (CI$_{90}$ 1.35-1.65)
Use of Generic Tacrolimus in Elderly Renal Transplant Recipients

Precaution Is Needed

Ida Robertsen,1 Anders Åsberg,1,2 Aleksander Olsen Ingere,1 Nils Tore Vethe,3 Sara Bremer,4 Stein Bergan,1,3 and Karsten Midtvedt²

[A graph showing the comparison of Tacrolimus area under the curve (AUC) and maximum concentration (Cmax) between Original Tac and Generic Tac for elderly renal transplant recipients.]
Bioavailability of a generic of the immunosuppressive agent mycophenolate mofetil in paediatric patients (ESRD in PD)

The “generic” effect of food on tacrolimus pharmacokinetics
Generic Immunosuppressants

- Bioequivalence in transplant recipients (not only HV)
- Patients subgroups (paediatric, black race, elderly…)
- Intra-patient variability greater in patients than HV
- Steady state
- Bioequivalence also based on clinical TDD (i.e. C_0)
- Generic prescription by transplant physicians
- Prescription “non substitutable”
- Avoid pharmacist switches
- Close follow-up
- Patient information (compliance)
Collateral effects (not damages) of generics

- Changes in pharmaceutical industry?
- Sub specialization?
 - Innovation
 - Development
 - Commercialization
- Wise prospection by pharmaceutical industry
- Drug hierarchy
- Innovation vs. cost/effectivity
- Drug development eras....
Collateral effects….

• Generics as comparators for cost/effectivity or cost/utility

• Comparator generics derived from innovator drugs developed 2 decades ago

• Risk of stagnation?