Liver transplantation: Hepatocellular carcinoma

Alejandro Forner

BCLC Group. Liver Unit.
Hospital Clínico. University of Barcelona

18 de marzo 2015
3r Curso Práctico de Transplante de Órganos Sólidos
Barcelona
Incidence of hepatocellular carcinoma

Incidence and mortality of the 6 most common cancers worldwide

<table>
<thead>
<tr>
<th>Location</th>
<th>Incidence*</th>
<th>%</th>
<th>Mortality*</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>1.847</td>
<td>13.0</td>
<td>1.589</td>
<td>19.7</td>
</tr>
<tr>
<td>Breast</td>
<td>1.676</td>
<td>11.9</td>
<td>0.521</td>
<td>12.9</td>
</tr>
<tr>
<td>Colon/rectum</td>
<td>1.360</td>
<td>9.7</td>
<td>0.693</td>
<td>8.5</td>
</tr>
<tr>
<td>Prostate</td>
<td>1.111</td>
<td>7.9</td>
<td>0.307</td>
<td>3.7</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.951</td>
<td>6.8</td>
<td>0.723</td>
<td>8.8</td>
</tr>
<tr>
<td>Liver**</td>
<td>0.748</td>
<td>5.6</td>
<td>0.745</td>
<td>9.1</td>
</tr>
<tr>
<td>All sites</td>
<td>12.667</td>
<td>100</td>
<td>7.571</td>
<td>100</td>
</tr>
</tbody>
</table>

*Numbers of cases (in millions)

**Including HCC and cholangiocarcinoma (< 10%)
Prognostic assessment of HCC patients

Factors that affect prognosis

- Stage, aggressiveness and growth rate of the tumor
- Liver function impairment
- General health of the patient
- The specific intervention (therapy)

Case report

Summary of Liver Disease

Male, 41 years old

1993

- Cirrhosis HCV. Treatment INF plus Rivabirin. No SVR.

2008: Control every 6 months

- Low platelets plus increased AFP
- US: segment IV, nodule of 1.1 cm
<table>
<thead>
<tr>
<th></th>
<th>Result</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bilirubin</td>
<td>1,5</td>
<td>0 – 2 mg/dl</td>
</tr>
<tr>
<td>ALT</td>
<td>126</td>
<td>< 40 IU/l</td>
</tr>
<tr>
<td>AST</td>
<td>156</td>
<td>< 40 IU/l</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>271</td>
<td>35 – 104 IU/l</td>
</tr>
<tr>
<td>g-glutamyl transpeptidase</td>
<td>98</td>
<td>5 – 36 IU/l</td>
</tr>
<tr>
<td>Serum albumin</td>
<td>40</td>
<td>37 – 53 g/L</td>
</tr>
<tr>
<td>Prothrombin time</td>
<td>81</td>
<td>70 – 100%</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>49</td>
<td>36 - 51 %</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>5410</td>
<td>4000 -10000/mm3</td>
</tr>
<tr>
<td>Platelets</td>
<td>98.000</td>
<td>150.000 – 400.000/mm3</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.85</td>
<td>0,3 – 1,5 mg/dl</td>
</tr>
<tr>
<td>AFP</td>
<td>430</td>
<td>0- 10 ng/dl</td>
</tr>
</tbody>
</table>
January 2008

- US

Dist = 1.19 cm
Case report

Radiology: MRI

T1-Gd- arterial phase

T1-Gd- delayed phase
Mass/Nodule on US

< 1 cm

- Repeat US at 4 mo

Growing/changing character
- Investigate according to lesion size

Stable
- Repeat US at 4 mo

1-2 cm

- 4 phase CT/dynamic contrast enhanced MRI

1 or 2 positive techniques*: HCC radiological hallmarks**

Yes
- HCC

No
- Biopsy

> 2 cm

- 4 phase CT/dynamic contrast enhanced MRI

1 or 2 positive techniques*: HCC radiological hallmarks**

Yes
- HCC

No
- Biopsy

Inconclusive

Diagnostic criteria for HCC
EASL/EORTC Guidelines 2012

EASL–EORTC Clinical Practice Guidelines. J Hepatol. 2012:56(4);908-43
Case report
What would you perform to define the treatment decision?

1. HVPG assessment
2. Surgical resection without further studies
3. Transplantation without further studies
4. CT-cHEST scanner plus HVPG assessment
Case report
Results of HVPG and CT-chest scanner

GPVH: 16,5 mmHg

CT-chest scanner: No M1
BCLC Staging and Treatment Strategy, 2012

Very early stage (0)
- Single < 2cm
- Child-Pugh A, PS 0

Potential candidate for liver transplantation

Early stage (A)
- Single or 3 nodules < 3cm
- Child-Pugh A-B, PS 0

Intermediate stage (B)
- Multinodular
- Child-Pugh A-B, PS 0

Advanced stage (C)
- Portal invasion
- Extrahepatic spread
- Child-Pugh A-B, PS 1-2

Terminal stage (D)
- Child-Pugh C
- PS 3-4

CURATIVE TREATMENTS
- Ablation
- Resection
- Transplant
- Ablation

PALLIATIVE TREATMENTS
- Chemoembolization
- Sorafenib
- BSC

Curative treatments: Surgical Resection

Prognosis of HCC suitable to resection

Best candidates:
- Solitary HCC
- Child-Pugh A:
 - No portal hypertension (HVPG < 10 mmHg)
 - Normal Bilirubin (< 1 mg/dl)

Curative treatments: Surgical Resection
Metanalysis of the impact of CSPH on postoperative outcomes

Panel A: 3-year mortality

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>With PH</th>
<th>Without PH</th>
<th>Total</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capucilli 2006</td>
<td>55</td>
<td>66</td>
<td>121</td>
<td>16.4%</td>
</tr>
<tr>
<td>Cucchielli 2009</td>
<td>33</td>
<td>89</td>
<td>122</td>
<td>16.0%</td>
</tr>
<tr>
<td>Gionini 2013</td>
<td>15</td>
<td>53</td>
<td>68</td>
<td>10.1%</td>
</tr>
<tr>
<td>Hidaka2012</td>
<td>24</td>
<td>48</td>
<td>72</td>
<td>11.0%</td>
</tr>
<tr>
<td>Ishiwa 2008</td>
<td>44</td>
<td>136</td>
<td>180</td>
<td>17.3%</td>
</tr>
<tr>
<td>Llovet 1999</td>
<td>24</td>
<td>42</td>
<td>66</td>
<td>6.3%</td>
</tr>
<tr>
<td>Rizzoncini2011</td>
<td>23</td>
<td>44</td>
<td>67</td>
<td>11.2%</td>
</tr>
<tr>
<td>Santambrogio 2013</td>
<td>21</td>
<td>63</td>
<td>84</td>
<td>12.9%</td>
</tr>
</tbody>
</table>

Total (95% CI) 57/4 398 100.0%

Heterogeneity: Tau² = 0.10, Chi² = 13.20, df = 7 (P = 0.07); I² = 47%
Test for overall effect: Z = 4.50 (P < 0.00001)

Panel B: 5-year mortality

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>With PH</th>
<th>Without PH</th>
<th>Total</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capucilli 2006</td>
<td>70</td>
<td>98</td>
<td>168</td>
<td>14.2%</td>
</tr>
<tr>
<td>Cucchielli 2009</td>
<td>43</td>
<td>89</td>
<td>132</td>
<td>15.2%</td>
</tr>
<tr>
<td>Gionini 2013</td>
<td>23</td>
<td>44</td>
<td>67</td>
<td>9.7%</td>
</tr>
<tr>
<td>Hidaka2012</td>
<td>33</td>
<td>48</td>
<td>81</td>
<td>11.4%</td>
</tr>
<tr>
<td>Ishiwa 2008</td>
<td>65</td>
<td>136</td>
<td>201</td>
<td>17.8%</td>
</tr>
<tr>
<td>Llovet 1999</td>
<td>27</td>
<td>42</td>
<td>69</td>
<td>7.4%</td>
</tr>
<tr>
<td>Rizzoncini2011</td>
<td>24</td>
<td>44</td>
<td>68</td>
<td>10.6%</td>
</tr>
<tr>
<td>Santambrogio 2013</td>
<td>33</td>
<td>63</td>
<td>96</td>
<td>13.7%</td>
</tr>
</tbody>
</table>

Total (95% CI) 565 986 100.0%

Heterogeneity: Tau² = 0.10, Chi² = 13.00, df = 7 (P = 0.07); I² = 49%
Test for overall effect: Z = 4.51 (P < 0.00001)

Panel C: clinical decompensation

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>With PH</th>
<th>Without PH</th>
<th>Total</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodiwi 2012</td>
<td>13</td>
<td>16</td>
<td>29</td>
<td>7.7%</td>
</tr>
<tr>
<td>Bruix 1996</td>
<td>11</td>
<td>15</td>
<td>26</td>
<td>1.8%</td>
</tr>
<tr>
<td>Capucilli 2006</td>
<td>27</td>
<td>99</td>
<td>126</td>
<td>22.1%</td>
</tr>
<tr>
<td>Cucchielli 2009</td>
<td>11</td>
<td>69</td>
<td>80</td>
<td>12.2%</td>
</tr>
<tr>
<td>Hidaka2012</td>
<td>15</td>
<td>40</td>
<td>55</td>
<td>10.4%</td>
</tr>
<tr>
<td>Llovet 2012</td>
<td>3</td>
<td>10</td>
<td>13</td>
<td>1.7%</td>
</tr>
<tr>
<td>Rizzoncini2011</td>
<td>14</td>
<td>44</td>
<td>58</td>
<td>15.5%</td>
</tr>
<tr>
<td>Santambrogio 2013</td>
<td>18</td>
<td>63</td>
<td>81</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

Total (95% CI) 396 722 100.0%

Heterogeneity: Tau² = 0.08, Chi² = 0.29, df = 7 (P = 0.23); I² = 25%
Test for overall effect: Z = 5.31 (P < 0.00001)

For CCLC Staging and Treatment Strategy, 2012

Very early stage (0)
- Single < 2cm
- Child-Pugh A, PS 0
- Potential candidate for liver transplantation

Early stage (A)
- Single or 3 nodules < 3cm
- Child-Pugh A-B, PS 0
- Single
- Portal pressure, bilirubin
- Normal
- Increased
- Associated diseases
- No
- Yes
- Transplant

Intermediate stage (B)
- Multinodular
- Child-Pugh A-B, PS 0
- Advanced stage (C)
- Portal invasion
- Extrahepatic spread
- Child-Pugh A-B, PS 1-2
- Terminal stage (D)
- Child-Pugh C
- PS 3-4

CURATIVE TREATMENTS

Curative treatments: Liver Transplantation

Outcomes applying restrictive selection criteria

<table>
<thead>
<tr>
<th>Authors, year</th>
<th>n</th>
<th>Selection criteria</th>
<th>Recurrence</th>
<th>Survival at 5y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazzaferro, 1996</td>
<td>48</td>
<td>Milan</td>
<td>8%</td>
<td>74%*</td>
</tr>
<tr>
<td>Jonas, 2001</td>
<td>120</td>
<td>Milan</td>
<td>15%</td>
<td>71%</td>
</tr>
<tr>
<td>Cillo, 2004</td>
<td>30</td>
<td>Milan</td>
<td>6.7%</td>
<td>72%</td>
</tr>
<tr>
<td>Herrero, 2008</td>
<td>47</td>
<td>Milan</td>
<td>8.5%</td>
<td>70%</td>
</tr>
<tr>
<td>Mazzaferro, 2009</td>
<td>444</td>
<td>Milan</td>
<td>5.5%</td>
<td>73.3%</td>
</tr>
</tbody>
</table>

* Survival at 4 years
~ 5-y recurrence rate
¬ 100-(5-y RFS)
Curative treatments: Liver Transplantation
Prognosis of patients with HCC waiting for OLT

- Time
- Size
- AFP
- Liver function / MELD

Curative treatments: Liver Transplantation
Prognosis of patients with HCC waiting for OLT

Tumor markers for prognosis assessment

AFP is a criteria for liver transplantation for HCC

AFP < 100 ng/mL
AFP 100-1000 ng/mL
AFP > 1000 ng/mL

Table 2. Simplified, User-Friendly Version of the AFP Model

<table>
<thead>
<tr>
<th>Variables</th>
<th>β coefficient</th>
<th>Hazard ratio</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest diameter, cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\leq3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3-6</td>
<td>0.272</td>
<td>1.31</td>
<td>1</td>
</tr>
<tr>
<td>$>$6</td>
<td>1.347</td>
<td>3.84</td>
<td>4</td>
</tr>
<tr>
<td>Number of nodules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>\geq4</td>
<td>0.696</td>
<td>2.01</td>
<td>2</td>
</tr>
<tr>
<td>AFP level, ng/mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\leq100</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100-1000</td>
<td>0.668</td>
<td>1.95</td>
<td>2</td>
</tr>
<tr>
<td>$>$1000</td>
<td>0.945</td>
<td>2.57</td>
<td>3</td>
</tr>
</tbody>
</table>

Cirrhotic patients with early HCC waiting for cadaveric liver transplantation

- Increase pool of donors
- Priority policies: Is MELD fair/effective?
- Adjuvant treatment during waiting time

Living donor liver transplantation
Domino/Split liver transplantation
High risk donors

Phase II trials

- Chemotherapy
- TACE
- PEI / RF

Cost-efficacy studies

- Resection/PEI
Cirrhotic patients with early HCC waiting for cadaveric liver transplantation

- Increase pool of donors
- Priority policies: Is MELD fair/effective?
- Adjuvant treatment during waiting time

Living donor liver transplantation
Domino/Split liver transplantation
High risk donors

Phase II trials
- Chemotherapy
- TACE
- PEI/RF
- Resection/PEI

Cost-efﬁcacy studies

There are not randomized-controlled trials
Adjuvant treatment during waiting time

Benefit of treatments depends on the waiting time

- Porrett post-MELD (54d)
 - Oldhafer (118d)
 - Decaens (128d)
 - Roayaie (142d)

+ Graziadei (178d)
 + Yao (180d)
 + Maddala (211d)
 + Fisher (277d)

- Hayashi (343d)
 - Porrett pre-MELD (574d)
Case report
Treatment

- Laparoscopy, RFA
- Inclusion in waiting list for Liver transplantation
Case report
Evolution during the waiting list

Imaging follow-up every 3 months: Complete response
Liver donor liver transplantation
Barcelona-Clínica Liver Cancer (BCLC) Group
Head: Jordi Bruix

Hepatology: A. Forner, M. Reig, A. Liccioni, A. Gazzola, R. Di Donato

Surgery: J. Fuster
Pathology: M. Solé, R. Miquel
Oncology: J. Maurel

Translational research lab:
JM. Llovet
V. Tovar
J. Peix
H. Cornellà
A. Moeini
C. Alsinet

Global BCLC lab:
L. Boix, A. Rhodes, JM. Lopez

Research Nurse: N. Llarch

Study Coordinator: I. Rengel

Adm. Support: N. Pérez
A. Farré